## Using Neutron $\sigma_{tot}(E)$ to Constrain the Asymmetry Dependence of Optical Potentials



Cole D. Pruitt PhD candidate in Chemistry Washington University in St Louis

## Outline

The state of neutron  $\sigma_{_{tot}}$  data

σ<sub>tot</sub> experimental results: <sup>16,18</sup>O, <sup>58,64</sup>Ni, <sup>112,124</sup>Sn

DOM improvement and fit status: <sup>16,18</sup>O



### $\boldsymbol{\sigma}_{_{tot}}$ oscillations: "nuclear Ramsauer effect"



#### Intermediate-energy $\sigma_{tot}(E)$



Takeaway: tons of missing  $\sigma_{tot}$  data, especially isotopically resolved!

## Outline

The state of neutron  $\sigma_{_{tot}}$  data

σ<sub>tot</sub> experimental results: <sup>16,18</sup>O, <sup>58,64</sup>Ni, <sup>112,124</sup>Sn

DOM improvement and fit status: <sup>16,18</sup>O



# Measuring $\sigma_{tot}$ for isotopically-enriched targets

Targets: <sup>16,18</sup>O (as H<sub>2</sub>O), <sup>58,64</sup>Ni, <sup>103</sup>Rh, <sup>112,124</sup>Sn

Goal: To achieve 1% statistical accuracy for a 1% difference between isotopes

> Time: 50+ hours beam per target x 10<sup>4</sup> neutrons/sec = ~10<sup>9</sup> neutrons per target









#### Benchmarking: literature results on natural samples



→ Analog and DSP methods give identical results up to 100 MeV (within statistical errors)

 $\rightarrow$  Above, 100 MeV, systematic difference of up to 10%

*Isotopic relative differences* are insensitive to systematic results

For relative differences, achieved  $\pm$  1% error over 50 energy bins from 3 to 500 MeV



Sept 28, 2018

Energy (MeV)





#### <sup>58,64</sup>Ni relative difference



## Outline

The state of neutron  $\sigma_{_{tot}}$  data

σ<sub>tot</sub> experimental results: <sup>16,18</sup>O, <sup>58,64</sup>Ni, <sup>112,124</sup>Sn

## DOM improvement and fit status: ${}^{16,18}O$



## DOM fits: <sup>48</sup>Ca neutron skin sensitive to $\sigma_{tot}$



## Current (preliminary) <sup>16</sup>O fit results









For additional detail: Ramsauer logic: Angeli and Csikai, *Nucl. Phys. A* **158**, 389 (1970) Literature  $\sigma_{tot}$  data: W. P. Abfalterer et al, PRC **63**, 044608 (2001), R. W. Finlay et al, PRC **47** 237 (1993) DOM formalism: Dickhoff, Charity, and Mahzoon, J. Phys. G: Nucl. Part. Phys. **44** (2017) 033001, 1-57 <sup>40,48</sup>Ca  $\sigma_{tot}$ (E): Shane et al, NIM Sect. A **614**, 468 (2010)



#### Optical potentials are as good as their data



Neutron star  
EOS 
$$\Leftrightarrow S(\rho) \simeq S(\rho_0) - \frac{L(\frac{\rho_0 - \rho}{3\rho_0})}{L(\frac{\gamma_0 - \rho}{3\rho_0})} + \frac{1}{2}K_{sym}((\frac{\rho_0 - \rho}{3\rho_0})^2)$$

"The correlation between **neutron radius of <sup>208</sup>Pb and the slope of the symmetry energy L** is by now very well established..." - F. J. Fattoyev and J. Piekarewicz, PRC 86 015802 (2012)

