Neutron Total Cross Sections and Neutron Skins

"What do the nucleons do in the nucleus?" - Sir Denys Wilkinson (proton and neutron matter distribution, neutron skin)

How does the nucleus "look" to an incident neutron, compared to a proton? (isovector components of potential)

How do reaction and structure inform each other?

(connecting data > $\epsilon_{_{F}} \leftrightarrow$ data < $\epsilon_{_{F}}$ by applying a dispersion relation)

Cole D. Pruitt PhD candidate in Chemistry Washington University in St Louis

Density Dependence of the Symmetry Energy

Z.Q. Feng et al. Phys Lett B 683 (2010)

Slide courtesy J. Silano

TUNL Seminar Series

Neutron star EOS

$$\Leftrightarrow S(\rho) \simeq S(\rho_0) - \frac{2?}{L(\frac{\rho_0 - \rho}{3\rho_0})} + \frac{1}{2} K_{sym} \left(\left(\frac{\rho_0 - \rho}{3\rho_0} \right)^2 \right)$$

"The correlation between **neutron radius of ²⁰⁸Pb and the slope of the symmetry energy L** is by now very well established..."

- F. J. Fattoyev and J. Piekarewicz, PRC 86 015802 (2012)

PREX, PREX II, and CREX

Neutron weak charge is ~12x proton weak charge. *REX measures the weak charge distribution directly via parity-violating election scattering ↔ neutron skin

Jan 24, 2019

(e,e'p): depletion from MF below ε_{F}

Figures courtesy W. Dickhoff (WUSTL)

TUNL Seminar Series

The symmetry energy and the isotope shift in Sn

Anselment et al., PRC **34** 1052 (1986); Berdichevsky et al., Z. Physik A **329** 393 (1988)

What if we looked across ALL scattering data to extract structure information? \rightarrow DOM

Dispersive Optical Model Formalism

Dyson Equation for SP propagator

Equivalent to ...

Schrödinger-like equation with: $E_n^- = E_0^A - E_n^{A-1}$ Self-energy: non-local, energy-dependent potential With energy dependence: spectroscopic factors < 1 \Rightarrow as observed in (e,e'p)

Figures courtesy W. Dickhoff (WUSTL)

DOM construction and procedure

- Construct a *complex optical potential* for nucleon-nucleus interaction (with analogy to optical scattering).
- In the DOM, *real part* (elastic scattering) and *imaginary part* (inelastic scattering) of potential are inextricably coupled, via Kramers-Kronig relations, just as in optical case.
- Need orthogonal data to constrain different parameters

Self-energy/OP is NON-local, dispersively correct, applied far below and above ε_{E} :

$$\operatorname{Re} \Sigma(E) = \Sigma^{HF} - \frac{1}{\pi} \mathcal{P} \int_{E_T^+}^{\infty} dE' \frac{\operatorname{Im} \Sigma(E')}{E - E'} + \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{E_T^-} dE' \frac{\operatorname{Im} \Sigma(E')}{E - E'}$$

(a) **n**+⁴⁰Ca

Fitted data from 2011 DOM treatment: ECS, A Power, TCS, **RCS**, SP levels

3000

Data Type	Typical E range (protons)	Typical E range (neutrons)	Importance + connection to potential
$\left[\frac{d\sigma_{_{el}}}{d\omega}\right]$	0-200 MeV	0-100 MeV	Historically the best-measured. Sensitive to Re-WS term
A. Power	0-200 MeV	0-100 MeV	Similar to ECS but not as well-measured; sensitive to spin-orbit strength, Re-WS
σ_{rxn}	0-100 MeV	14.1 MeV	Protons: data often lacking >50 MeV. Neutrons: <i>almost no data except 14.1 MeV</i> (d+ ³ H)
$\sigma_{_{ m tot}}$	N/A	0-100 MeV	Isotopic targets poorly known! Strongly tied to Re-WS, Im strength above ε_F !
e(A,A)e	q-range: 0.5-3.5 fm ⁻¹	N/A	Can get charge density by Fourier transform: Critically connected to proton SP occupations
A(e,e'p)A-1	p-range: 10-200 MeV/c	N/A	Can extract S(E): Direct demonstration of depletion from MF, peak broadening

Angeli and Csikai, Nucl. Phys. A 158, 389 (1970)

TUNL Seminar Series

σ_{tot} oscillations: "nuclear Ramsauer effect"

 $σ_{tot}$ provides Re(Σ) and Im(Σ) constraints and isovector information (when compared with proton $σ_{rxn}$ data)

Intermediate-energy $\sigma_{tot}(E)$

Takeaway: tons of missing σ_{tot} data, especially isotopically resolved!

Neutron σ_{tot} and neutron skins

Measuring σ_{tot} for isotopically-enriched targets

Targets: ^{16,18}O (as H₂O), ^{58,64}Ni, ¹⁰³Rh, ^{112,124}Sn

Goal: achieve 1% statistical accuracy for each of 50 energy bins, 3-300 MeV

Time: 50+ hours beam per target x 10⁴ neutrons/sec = ~10⁹ neutrons per target

Leverage digitizer technology: reduce deadtime $10x \rightarrow$ reduce sample by 10x

Neutron $\sigma_{_{tot}}$ and neutron skins

Cole D. Pruitt (WUSTL)

Jan 24, 2019

TUNL Seminar Series

Neutron $\sigma_{_{tot}}$ and neutron skins

Benchmarking: literature results on natural samples

→ Analog and DSP methods give identical results up to 100 MeV (within statistical errors)

 \rightarrow Above, 100 MeV, systematic difference of up to 10%

Isotopic relative differences are insensitive to systematic results

For relative differences, achieved ± 1% error over 50 energy bins from 3 to 500 MeV

^{16,18}O and ^{58,64}Ni

¹⁰³Rh and ^{112,124}Sn

^{58,64}Ni relative difference: isovector information

DOM results: ⁴⁰Ca

- Recover the charge density distribution to within a few %
- Recover RMS charge radius within 2%
- Nonlocality critical to recovering particle number and getting core of charge density correct

Neutron $\sigma_{_{tot}}$ and neutron skins

Cole D. Pruitt (WUSTL)

TUNL Seminar Series

Neutron σ_{tot} and neutron skins

Is potential integral reasonable?

- Asymmetric far from ϵ_{F} ? YES
- Symmetric near ϵ_{F} ? SOME
- Surface ~ 20-30 MeV? YES
- Volume > 50 MeV? YES

Jan 24, 2019

TUNL Seminar Series

Neutron σ_{tot} and neutron skins

Neutron $\sigma_{_{tot}}$ and neutron skins

Neutron $\sigma_{_{tot}}$ and neutron skins

Neutron σ_{tot} and neutron skins

Large neutron skin \leftrightarrow large L \leftrightarrow large neutron star radius

Urgent task: generate covariance matrix to understand sensitivity of extracted values to underlying data/parameter choices!

Takeaways

- Must go beyond the mean field to get p/n distribution!
 In ¹⁶O, ~10% p/n density is missing from mean-field occupations!
 Depletion mandatory to get charge density correct
- $\sigma_{_{rxn}}(p)$ and $\sigma_{_{tot}}(n)$ tell you the isoscalar/isovector Im strength above $\epsilon_{_{\rm F}}$
- (e,e) and quasi-free scattering (e,e'p; p,2p) tell you the *isoscalar* Im strength below ε_F
- all data together, coupled with dispersion relation, constrains *isovector* Im strength below ε_E
- Need a complete covariance analysis on DOM to generate theoretical error bars → ongoing project
- Need covariance analysis on *beyond-mean-field models* to see how it affects bulk properties!

¹⁶O SP particle number from DOM

0s1/2	0p3/2	0p1/2	sum
1.858	3.617	1.772	7.247

L and correlated quantities: Fattoyev and Piekarewicz, PRC **86** 15802 (2012); Lattimer and Steiner, Eur. Phys. J. A, **50** 40 (2014) Sn isotope shift: Anselment et al., PRC **34** 1052 (1986); Berdichevsky et al., Z. Physik A **329** 393 (1988) Ramsauer logic: Angeli and Csikai, Nucl. Phys. A **158**, 389 (1970) Literature σ_{tot} data: W. P. Abfalterer et al, PRC **63**, 044608 (2001), R. W. Finlay et al, PRC **47** 237 (1993) DOM formalism: Dickhoff, Charity, and Mahzoon, J. Phys. G: Nucl. Part. Phys. **44** (2017) 033001, 1-57 ^{40,48}Ca σ_{tot} (E): Shane et al, NIM Sect. A **614**, 468 (2010)

DOM fitting: an overview

Jan 24, 2019

